
Hidden Object Detection for Computer Vision Based Test Automation

System

RAJIBUL ANAM, MD. SYEFUL ISLAM, MOHAMMAD OBAIDUL HAQUE

Samsung R&D Institute Bangladesh

BANGLADESH

rajibul.an@samsung.com, syeful.islam@samsung.com, obaidul.h@samsung.com

Abstract: In Software Quality Assurance, computer vision based automation tools are used to test the window

based application and window contains many type of objects like button, box, list, etc. Automation tool detect

window objects by comparing images. Most of the objects are visible in the screen but some are not visible to

the screen at the first time, proper interaction with the window application hidden objects get visible to the

screen like drop-down list item, editor text object, list box item and slider. With the vision based automation

systems these hidden objects cannot be searched directly. In this paper proposes some methods which use

image and shortcut key to interact with the testing software to search the hidden objects. These methods will

enhance the automation tools to access the window application hidden objects faster.

Key-Words: - test case automation; software quality assurance; vison based; window application

1 Introduction
Software Quality Assurance (QA) is one of the

critical areas of software development process life

cycle. After co-work with developer and designers,

QA ensures the correctness of the operation by

testing the software application through different

type of test cases [1]. Many methods have been used

to test the software and among them Black Box and

White Box Testing are very commonly used. Black

Box testing consists of specification and experience

based testing, which checks the entire software

operation [1-2]. White Box testing follows the

structure based testing, which checks the software

process flow [1-2]. QA testing actions or steps are

executed by mouse and key events, after the events,

program flows and interfaces get change [2], which

is the part of the QA testing. Manual testing

operates by human, it executes series of steps and

check for the specific output which has chances of

error [1],[3]. But Automation System executes

series of steps according to the code instruction,

which executes test steps faster than human and less

error [3]. Moreover, automation system has been

used for Black Box testing because it follows

specific test steps and expects for target results.

Most of the testing application needs to be tested

with the predefined Test Cases (TC). These

predefined TCs can be automated, so the testing will

be faster and human dependency will be reduced.

Graphical User Interface (GUI) QA testing

purpose many type of automation system have been

used such as Pesto [4], DEVSimPy [5], Watir [1],

Selenium [7], Sikuli [6],[8]. These systems either

use the vision based or screen objects position

pointing technique to track the screen objects. Script

re-usability and smooth execution are essential for

the automation system [6]. Automation system

executes QA testing steps/actions easily by tracing

image and objects position. GUI applications has

hidden or not visible objects like text objects in the

editor, drop-down list object, multi tab scroll object

and slider. These types of hidden objects can be

searched easily by manual QA testing. But vision

based systems firstly; trace objects (image) and

secondly, execute action events on the screen object

position. Vision based system uses only image

based object detection method, which uses only

mouse events to interact with the GUI testing

application therefore, complex steps like search

hidden object from a list box or slider scrolling

takes time and sometimes failed to trace the target

hidden object. Considering these difficulties,

focuses on how to access hidden objects accurately

and enhance re-usability.

This paper proposes some methods that will

enhance vision based automation tools to discover

hidden objects (GUI elements) from the GUI based

applications by using key and mouse events. Vision

based system uses only mouse events therefore,

include the key events (shortcut key additional

feature) to trace the hidden object easily and

accurately. The propose methods use shortcut key

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 570 Volume 14, 2015

and click (image object to click on the GUI

application) for action events, then interact with the

visible objects through few steps, afterwards the

hidden object gets visible on the screen. The

proposed methods will enhance the vision based

automation systems to search the hidden objects

faster.

This paper is arranged as follows. Section 2

provides brief review of other automation tools for

GUI testing. Section 3 describes about the proposed

solution. Section 4 details of the usability study and

finally conclusion is on section 5.

2 Related Works
Software QA testing automation systems has been

used to reduce human effort. Automation systems

trace the target objects by screen object position,

image matching and source name. Automation

actions/steps are executes by click, drag-and-drop

and keyboard events. Tools like Sikuli, Robot and

Pesto uses image tracing, object source name and

object screen position to access the object. These

automation systems developed either on vision

based or screen objects position detection based

methods. Below discuss details of these two types of

automation systems.

2.1 Vision Based Automation
Sikuli is an open source GUI vision based

automation system, which searches the target object

using screenshot [8-10]. The IDE permits users to

take a screenshot of the target object (GUI elements)

such as button, icon, dialog box and run time detects

the object to direct the mouse and keyboard events

[11-13]. Figure 1 illustrates the Sikuli Framework,

where built-in modules are available like find, click

and key events [14]. There are more modules

available which cannot be used from IDE directly. It

has the Application Programming Interface (API)

for testing and developing the library. It is a

platform independent framework.

Robot Framework is a generic testing automation

system to test Acceptance Test-Driven Development

(ATDD) [15]. ATDD is a process where developers

and testers discuss the demands required by the

customers to come with the acceptance test before

development. The acceptance test provides the

functional importance of the software [15].

Figure 1. Sikuli Framework

Figure 2. Robot Framework

The aim of the acceptance tests is to justify the

requirements by providing examples for each test.

The examples can be tested to prove compliance.

The script language is written using plain English

natural commands called Keywords [9]. Keywords

are common like methods in programming

language. Natural command keywords make the

tests more readable and easy to understand even for

non-coders. This framework script writing is

extended to Python (can run also on both Ironpython

and Jython) or java. The developers can use the

existing syntax to create the script or can create own

syntax. Robot framework uses for GUI testing and

system resource management, but only java based

software can be tested. It generates auto report of

the testing as html and text format. It has the API for

testing and developing the library.

2.2 Screen Objects Position Detection Based

Automation System
The TestComplete [16], TestPlant [17] and Squish

[18] are recoding based framework. These systems

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 571 Volume 14, 2015

record user interaction events according to the

screen object position and replay time these systems

execute the events according to the recorded

sequence. Replay time these systems execute the TC

very fast and generate a report of the TC. These

systems use their own language to generate script

and developers can edit the auto generated scripts.

Recording time these systems track the user events

position like mouse click position, drag-and-drop

positions and keyboard input information. If the

testing software font, color gets change then the

recorded script can be replay unless the application

layout has changes. Moreover recording and replay

(execution) time the screen size (resolution) should

be same because all the action events execute

according to the objects position. If the app window

or pop-up window position gets change on the

screen then replay time generate errors. The

application layout should be same at recording and

replay time.

3 Proposed Solution
Various types of automation systems are available

and most of it uses vision based algorithm to search

the GUI target objects. These systems take the

screenshot of the window first; then select the target

object from the screenshot and interact with the

application by mouse or key events. These systems

are used to search the GUI window target objects

like toolbar button, menu item, icon and dialog box

[14]. Moreover, searching arbitrary depends on the

screenshot and the target object image. If the target

objects image do not matches with the screenshot

image, then automation system could not search the

target object in the screen. In this case system

searches for an object which is not visible (hidden

object) in the screen or the object is not available in

the testing software. But the hidden object needs to

be search because it is available in the testing

software and part of the TC. The automation system

would not be able to search the target object until

the target object gets visible on the screen. Current

approaches required entering an image as query to

search the target object. If searching for a hidden

object in the window screen and could not trace the

target object then it will generate an error, which is

a limitation of the vision based automation system.

The proposed method searches hidden objects

like item in the editor, drop-down list object, multi

tab scroll object and slider positions. In addition

shortcut key events has introduced instead of

screens object image to trace the target object. The

Editor Scroll-bar Object Selection method uses to

search the hidden object from a scroll-bar affiliated

object. The Drop-down List Object Selection

method is applicable to search hidden object from

the drop-down list. The Multi Tab List Object

Selection method is valid to search the hidden object

from the multi tab list box and Slider Positon

Selection method is applicable to search and puts

the slider position according to the code instruction.

Below sections discuss details of the proposed

methods which uses mouse and key (shortcut key)

events.

3.1 Editor Scroll-bar Object Selection

(ESOS)
QA testing time automation system needs to check

the text editor or webpage interface and font

decoration objects. It becomes very hard to find text

object in the editor which contains a long page and

the target text object stand at the end of the page, at

this scenario the stroller get enabled. But hidden

objects do not appear on the screen and could be

visible unless the system searches for the hidden

objects [14]. Figure 3 shows the editor screen with

scroll-bar object, where a text editor is opened. The

automation system needs to search the figure 4

hidden target object (search in the screen) in the

(figure 3) text editor. In this scenario the automation

system needs to scroll down the scroll-bar using the

mouse [13]. There is no specific method for the

scroll-bar to scroll down at specific point. To solve

this problem, proposed the ESOS method where the

scroll-bar will be scroll down until it reaches the

target object.

Figure 5 line 1-2 searches the mainobject (the

style.css object) and take focus on the style.css

object. Line 3 puts the cursor at the beginning of the

editor. Line 4-8 searches for the targetobject (figure

4), if it does not find targetobject, then goes to the

next line until it reaches to the targetobject (figure

4). If the targetobject found then select (click) the

hidden target object. The scroll-bar cannot be used

directly (can access it but cannot scroll it as

requires) and with this method automation system

can search the hidden object from the screen without

scrolling the scroll-bar. Figure 6 shows where the

hidden object gets visible and hidden target object is

found by using this method.

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 572 Volume 14, 2015

Figure 3. Screenshots of a Scrolling Object

Figure 4. Hidden Target Object

Figure 5. Editor Scrollbar Object Selection Method

Figure 6. After Scrolling the Screen

3.2 Drop-down List Object Selection

(DLOS)
Drop-down list objects are used in the window and

web based applications. There is some drop-down

list which contains text with images. Most of the

drop-down list contains long item lists which need

to check and test for the QA. If drop-down item list

is long, then most of the items will not be visible on

the screen [14] which creates hidden object in the

list. But drop-down list hidden object items cannot

be access properly by the automation system

because the scroll-bar appears dynamically and

needs to scroll it to get the hidden object. The

proposed DLOS method will enhance the

automation system to search the hidden objects from

the drop-down list.

Figure 7. Screenshot of Dropdown List

Figure 8. Hidden Target Object

Figure 9. Dropdown List Object Selection Method

Figure 7 shows the drop-down list with long item

lists which contains hidden object. Figure 8 shows

the hidden target object which needs to search from

the drop-down list. Figure 9 shows the DLOS

algorithm where line 1 uses shortcutkey to select the

drop-down list object. Line 2-6 searches for the

targetobject from the list, if not found targetobject

then goes to the next list item until it reaches to the

targetobject. Figure 10 shows the targetobject

style.css object

Scrollbar needs to scroll down

Scrollbar needs to scroll down

Input:

mainobject is an image or text object to focus on the object;
 targetobject is an image object;

Output:

 targetobject get selected;
Variables:

 screenimage is the desktop screen capture image;

 onelinedown is an keyboard value to move down the cursor
next line;

ScrollbarObjectSelection(mainobject, targetobject)
1. If mainobject matched with screenimage Then

2. Click on the mainobject;
3. Put cursor to the beginning of the editor;

4. While until found the targerobject

5. Move the cursor onelinedown;
6. If targetobject matched with the screenimage Then

7. Click the targetobject in the screen;

8. Break;
9. Else cannot found the targetobject;

10. End

Input:

 shortcutkey is keyboard value to take focus of the object;
 targetobject is an image object;

Output:

 targetobject get selected;
Variables:

 screenimage is the desktop screen capture image;

 onelinedown is an keyboard value to move down the cursor
next line;

DropdownListObjectSelection(shortcutkey, targetobject)
1. If shortcutkey works to select the object Then

2. While until the targetobject

3. Move the cursor onelinedown;
4. If targetobject matched with screenimage Then

5. Click the targetobject in the screen;

6. Break;
7. Else cannot found the targetobject;

8. End

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 573 Volume 14, 2015

matched with screenimage. This method searches

the entire hidden objects from the list and checks for

the target object.

Figure 10. Screenshot of the Dropdown List with Target Object

3.3 Multi Tab List Object Selection

(MTLOS)
QA testing time needs to interact with GUI window

multi tab objects [13]. A multi tab window contains

more than one list box objects with scroll-bar

features. List box object contain many hidden

objects, automation system needs to interact with

the hidden objects to complete the TC. Figure 11

shows an example of the multi tab objects which

contains three tab objects. Figure 11 (1) shows the

first tab object (sample), figure 11 (2) shows the

second tab object (Web App) with list box, figure 11

(3) shows the another tab object with hidden (item

list) and figure 11 (4) scroll-bar enabled for

scrolling.

Figure 11. Multi Tab List Object Screenshot

Figure 12. Hidden Target Object

To search the target object (figure 12) from figure

11, firstly needs to select the (1) sample object,

secondly select the (2) web app object from the list

box and finally searches for the target object from

the (3) next list box.

The proposed MTLOS method is able to search

target object from multi tab list-box hidden object.

Figure 13 shows the MTLOS method, where line 1-

2 selects the mainobject (figure 11, object 1), line 3-

4 selects the next tab object and line 5-9 searches

(figure 11, object 2) for the firstkeyinfo image

object until it found. Line 10-11 selects next tab

object (figure 11, object 3), line 12-16 search for the

tergetobject (figure 12) until it found. Figure 14

shows the target object found using this method.

Figure 13. Multi Tab List Object Selection Method

Input:

 mainobject is an image object;

firsttab is a keyboard tab value;
firstkeyinfo is an image object;

secondtab is a keyboard tab value;

 targetobject is an image object;
Output:

 targetobject get selected;

Variables:

 screenimage is the desktop screen capture image;

 onelinedown is an action variable to move down the cursor

next line;

Multitabobjectselection(mainobject, firsttab, firstkeyinfo, secondtab,

targetobject)
1. If mainobject matched with screenimage Then

2. Click on the mainobject;

3. If firsttab is true Then
4. Press tabkey;

5. While until firstkeyinfo

6. Move the cursor onelinedown;
7. If firstkeyinfo matched with screenimage Then

8. Click the firstkeyinfo in the screen;

9. Break;
10. If secondtab is true Then

11. Press tabkey;
12. While until targetobject

13. Move the cursor onelinedown;

14. If targetobject matched with screenimage Then

15. Click the targetobject in the screen;

16. Break;

17. Else cannot found the targetobject;

18. End

1

2

3

4

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 574 Volume 14, 2015

Figure 14. Screenshot of Multi Tab List Object with Target Object

3.4 Slider Position Selection (SPS)
Slider is a GUI window application object which

has no onscreen values (from where to drag and

drop) like scroll-bar. QA purpose slider needs to

access, change slider positions and checks the

expected result. But for the QA testing purpose

automation tool needs to access and change the

value of the slider [13] which takes time and

sometimes automation system failed to change the

slider positions as requires. Figure 15 shows the

slider where it is at the Error mode and testing

purpose needs to set as Debug mode (figure 16).

While TC execution, automation system cannot put

the slider as required position easily, sometimes it

starts scrolling on the left and sometimes on the

right side. As a result it takes additional time to

reach to the goal. The proposed SPS method can

overcome this problem and put the slider position

according to the code instruction easily.

Figure 15. Screenshots of Slider Object

Figure 16. Target Object

Figure 17. Slider Positon Selection Method

Figure 18. Slider Position with Minimum Value

Figure 17 illustrates the SPS methods, where line

1-2 take focus on the sliderobject, line 3 takes the

slider lowest sliding position (figure 18). Line 4-8

increases the slider positions according to the

keyinfo value until it reaches to the targetobject.

With this method the slider hidden objects value can

be search faster.

3.5 Framework Comparisons
The Sikuli [9] is a vision based automation

framework, it uses image to detect the object and

after that use the action events to interact with the

testing software. The TestComplete [16], TestPlant

[17] and Squish [18] are screen objects position

detection based framework, all the mouse and key

events are applied on specific point of window

screen object position. If the object position gets

change (screen resolution) or mismatched then

select or interact with different objects and generate

error. Table 1 shows the comparison criteria of

automation frameworks.

Screen objects position detection based

framework can access the hidden objects, if the

screen window objects position remains fixed on the

second run time. But TC execution time it is very

hard to confirm the window objects position.

Developer record the test, execution time if the

window object appears at different position, then

developer needs record the steps again which is

Input:

 mainobject is an image object;

keyinfo is a keyboard key move value;

targetobject is an image object;

Output:
 targetobject get selected;

Variables:

 screenimage is the desktop screen capture image;
 onelinedown is an action variable to move down the cursor

next line;

scrollslider(mainobject, keyinfo, targetobject)

1. If mainobject matched with screenimage Then

2. Click on the mainobject;

3. Scroll slider to lowest value;

4. While until targetobject
5. Press keyinfo;

6. If targetobject matched with screenimage Then

7. targetobject object found;
8. Break;

9. Else cannot found the targetobject;

10. End

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 575 Volume 14, 2015

redundant. Table 2 illustrates the frameworks, if the

screen window object position or the resolution gets

change, then cannot interact with the onscreen

window objects to search the hidden objects. But

same time the proposed methods are able to interact

with the changed screen (position or resolution)

window objects. The proposed methods uses key

and (image objects) click events to interact with the

window objects to search the target hidden objects.

Table 1. Comparison of Automation Framework Criteria

 Sikuli TestComplete TestPlant Squish

Open Source Yes No No No

App code

required
Yes Yes Yes Yes

Platform

Independent
Yes No Yes Yes

Hidden

Object

Identification

No No Yes Yes

Image Based Yes No No No

Screen

Position

Dependent

No Yes Yes Yes

Test

Recording
No Yes Yes Yes

Table 2. Comparison of Framework With Screen Object Position

Criteria

S
ik

u
li

T
e
st

C
o
m

p
le

te

T
e
st

P
la

n
t

S
q

u
is

h

P
r
o

p
o

se

M
e
th

o
d

s

C
h

a
n

g
e
d

S

c
r
ee

n

P
o

si
ti

o
n

 Hidden Object
Identification

No No No No Yes
Slider Interaction

No No No No Yes

3.6 Complexity Comparisons
The time complexity depends on flow of the

algorithm [19]. If the algorithm uses nested

operation then the complexity gets higher. Below

table 3 shows the comparison of the Proposed

Algorithm (PA) and existing Vision Based

Algorithm (VA), where O denotes as growth of a

function and n is number of steps. It is clear that VA

and PA time complexity are almost same. There is

no significant difference between PA (ESOS,

DLOS, MTLOS and SPS) and VA. But there are

differences on the execution time because of the

dependency (wait for the object, interaction

methods).

Table 3. Complexity of the Algorithms

Time Complexity of VA Time Complexity PA

O(n) [14] O(n) ESOS

O(n) [14] O(n) DLOS

O(n) [14] O(n) MTLOS

O(n) [14] O(n) SPS

4 Usability Study
GUI Automation system executes action according

to the instructions (code). Basically two types of

event occur in the GUI automation, one is key event

and another is mouse event. Automation system

runs the code; execute commands which interact

with GUI testing system. To generate mouse or key

events, screen objects position detection based

systems record the user actions and automatic

generates code for automation system. And image

based systems do not have this facility, developer

needs to write code.

4.1 Case Study Design
This section describes the experimental results

obtained by the VA and PA with four predefined

Test Cases. The empirical study presented in this

paper is conducted in real time context. This paper

proposed four methods which uses vision based

methods and shortcut key to access the object,

which is a combination of image and key events.

Moreover these methods will enhance the

automation system to get the target object faster. To

support this claim carried out a case study to test the

hypothesis below.

H1: Using shortcut key (key event) and vision

based screen object detection (click) to search the

target object reduces automation systems interaction

events than using only vision based object detection

(click).

H2: Combination of vision based screen object

detection and shortcut key can trace the hidden

object faster than using only vision based screen

object detection.

 This study was designed to test the VA and PA

performances. To execute the automation used Intel

Core i7 (3.4GHz) processor, 4GB ram, Windows 7

OS and display resolution (1920×1080). QA testing

purpose selects the Tizen IDE application [20].

Table 4 shows details of TCs, which is created to

test the Tizen IDE for QA purpose. Each TC was

executed thirty times randomly. TC-1 executes the

ESOS, TC-2 executes the DLOS, TC-3 executes the

MTLOS and TC-4 executes the SPS algorithm.

There are two dependent variables in this study:

number of events (interaction) and task completion

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 576 Volume 14, 2015

time. This information cannot observe directly and

therefore, can only be measured after completion of

all the data.

Table 4. Test Cases

Test

Case

Steps Search the

Target

Object

Proposed

Method

Used

TC-1

Click on style.css file from

the file browser

footer p {

font-size:
12px;}

ESOS

TC-2

Click Top-up menu Window-

>Preferences; New window

Double Click Web->Click
CSS Files->Encoding List

Korean, ISO

2022
DLOS

TC-3

Click Top-up menu File-

>new->Tizen Web Project;
New window Click Sample-

>Mobile->Web App-

>TizenWinset

TizenWinset MTLOS

TC-4

Click Top-up menu Window-
>Preferences; New window

click Tizen SDK->Click

Logging->Slider

Select Slider

to DEBUG
SPS

4.2 Results
Figure 19 shows the number of mouse and key

events has been used to execute the TCs. SA used

52 clicks; ESOS used 2 clicks and 2 key events to

execute TC-1. SA used 30 clicks; DLOS used 1

click and 8 key events to execute TC-2. To Executes

TC-3, SA used 18 clicks and MTLOS used 2 clicks

and 8 key events. SA used 13 clicks; SPS used 1

click and 7 key events to execute TC-4. The

interaction events shows that the proposed

algorithms used less interaction events compared to

only vision based systems. Figure 20 shows the total

number of events (click and key) to execute the PA

and VA. PA used six click events and 25 key events,

same time VA used 113 click events to execute all

the TCs. Table 5 illustrates the Mann-Whitney U

test analysis results, where Z = 2.411 and p =

0.0163, which is statistically significant PA used

less interaction events than VA. From this result can

conclude that combination of mouse and key events

required less interaction to execute the TCs which

supports the H1 hypothesis.

Figure 21 shows TC-1 completion time of VA

and ESOS, VA has two outlier values, VA took

30.74 seconds and ESOS took 1.91 seconds to

complete the tasks, where N = 60, x̅ of VA is 45.50,

ESOS is 15.50, Z = 6.663 and p = 0.000002, which

is statistically significant and the result shows that

ESOS takes less time that VA.

Figure 19. Number of Events for Each TC

Figure 20. Total Number of Events

Table 5. Mann-Whitney U test analysis of number of events to finish
tasks

Method Events N Mean

VA
Click 4 6.5

Key 4 2.5

PA
Click 4 2.5

Key 4 6.5

Test Statics

Z 2.411

p value (2 tailed) 0.0163

Figure 22 illustrates the TC-2 completion time,

VA has three outlier values, VA took 7.29 seconds

and DLOS took 2.96 seconds, where N=60, x̅ of SA

is 45.50 and ESOS is 15.50, Z = 6.663 and p =

0.000002, which is statistically significant and the

result shows that DLOS takes less time than VA.

Figure 23 illustrates the TC-3 completion time,

VA has five outlier values and MTLOS has one

outlier value. VA took 19.14 seconds and MTLOS

took 13.29 seconds, where N = 60, x̅ of SA is 45.50,

ESOS is 15.50, Z = 6.654 and p = 0.0000002, which

is statistically significant and the data shows that

MTLOS takes less time than VA.

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 577 Volume 14, 2015

Figure 21. TC-1 Completion Time

Figure 22. TC-2 Completion Time

Figure 23. TC-3 Completion Time

Figure 24 shows the TC-4 completion time, VA

has six and SPS has one outlier value. VA took

15.94 seconds and SPS took 9.85 seconds, where N

= 60, x̅ of SA is 43.50, ESOS is 17.50, Z = 5.767 and

p = 0.000008, which is statistically significant and

the results shows that SPS takes less time than VA.

Figure 25 shows the completion time of four TCs,

VA took 18.27 seconds and PA took 7 seconds.

Table 6 shows the average TCs completion time and

table 7 shows the Mann-Whitney U test analysis

results, where N = 240, x̅ of SA is 164.50, PA is

76.50, Z = 9.819 and p = 0.0000001, which is

statistically significant and the results shows that PA

takes less time than VA. From this analysis can

conclude that combination of mouse and key events,

automation systems can trace the hidden objects

faster which supports the H2 hypothesis.

Figure 24. Total TC Completion Time

TABLE 6. Average execution time

TABLE 7. MANN-WHITNEY U TEST ANALYSYS OF COMPLETION TIME TO

FINSH TASKS

Methods N

VA 120

PA 120

Total 240

Test Statistics

Z 9.819

p value (2 tailed) 0.0000001

 VA Proposed Methods

Test Case Execution Time (sec) Execution Time (sec)

TC-1 30.74 1.91

TC-2 7.29 2.96

TC-3 19.14 13.29

TC-4 15.94 9.85

TOTAL (AVG) 18.27 7

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 578 Volume 14, 2015

5 Conclusion
GUI automation tools enhance Test Case execution

and reduce human efforts. Most of the Black Box

Test Cases can be executed with this system;

limitation of the technology vision based automation

system in some cases take time and failed to

find/search hidden objects and dynamic appearance

of the objects. As a result all type of TCs cannot be

executed using VA system. The proposed

techniques have the unique features to identify

hidden objects even the window objects screen

position gets change. The proposed methods are

implemented in real time automation application,

which can discover the hidden objects smoothly and

enhance the re-usability. The usability study results

show that combination of key and mouse events in

the VA system can find the hidden target object

faster. These methods enhance the VA systems to

find the target object faster which will help the QA

testers to get the result quicker. Currently there is

one limitation with these methods. It takes time to

check the list box objects one by one to search the

hidden target object. Future plan is to overcome

these two limitations and works for complete

introducing full testing framework for hidden object

detection.

References

[1] S. Inderjeet, and T. Bindia, "Comparative

Analysis of Open Source Automated Software

Testing Tools: Selenium, Sikuli and Watir",

International Journal of Information &

Computation Technology, vol. 4, pp. 1507-

1518, 2014.

[2] K. Dea-Kwang, and L. Lee-Sub, "Reverse

Engineering from Exploratory Testing to

Specification-based Testing", International

Journal of Software Engineering and Its

Applications, vol. 8(11), pp. 197-208, 2014.

[3] L. Maurizio, S. Andrea, R. Filippo, and T.

Paolo, "Automated Generation of Visual Web

Tests from DOM-based Web Tests",

ACM/SIGAPP Symposium on Applied

Computing, April, 2015.

[4] M. Leotta, A. Stocco, F. Ricca, P. Tonella,

"PESTO: A Tool for Migrating DOM-Based to

Visual Web Tests", ACM/SIGAPPSymposium

on Applied Computing, April, 2015.

[5] L. Capocchi, J.F. Santucci, T. Ville, "Software

Test Automation using DEVSimPy

Environment", International Conference on

Principles of Advanced Discrete Simulation,

May, 2013.

[6] Borjesson, and F. Robert, "Automated System

Testing using Visual GUI Testing Tools: A

Comparative Study in Industry",

"Borjesson2012visual", 2012.

[7] J. Hyunjun, L. Sukhoon, B. Doo-Kwon, "An

Image Comparing-based GUI Software Testing

Automation System", World Congress in

Computer Science, Computer Engineering, and

Applied Computing, 2012.

[8] K. Pragya, "Ameliorating the image matching

algorithm of Sikuli using Artificial Neural

Networks", International Journal of Computer

Science & Communication, vol. 5, pp. 1-4,

2014.

[9] http://www.sikulix.com

[10] C. Tsung-Hsiang, "Using graphical

representation of user interfaces as visual

references", The 24th annual ACM symposium

adjunct on User interface software and

technology, pp. 27-30, 2011.

[11] S. L. M. Jeffrey, "User interface computation

as a contextualized approach for introductory

computing instruction", The 9th Annual

International ACM Conference on International

Computing Education Research, pp. 179-180,

2013.

[12] V. Andriychenko, L. Ying-dar , C. T. National,

"Automatic Functionality and Stability Testing

Through GUI of Handheld Devices",

CiteSeerx, 2011.

[13] C. Tsung-Hsiang, Y. Tom, C. M. Robert, "GUI

testing using computer vision", CHI 10th

Conference on Human Factors in Computing

Systems, pp. 1535-1544, 2010.

[14] Y. Tom, C. Tsung-Hsiang, C. M. Robert,

"Sikuli: using GUI screenshots for search and

automation", The 22nd annual ACM

symposium on User interface software and

technology, pp. 183-192, 2009.

[15] http://robotframework, Jan, 2015.

[16] http://smartbear.com/product/testcomplete, Jan,

2015.

[17] http://www.testplant.com, Jan, 2015.

[18] http://www.froglogic.com, Jan, 2015.

[19] O. S. Pietro, H. Jun, Y. Xin, "Time complexity

of evolutionary algorithms for combinatorial

optimization: A decade of results",

International Journal of Automation and

Computing, vol. 4, pp. 218-293, 2007.

[20] https://www.tizen.org, Jan, 2015.

WSEAS TRANSACTIONS on COMPUTERS Rajibul Anam, Md. Syeful Islam, Mohammad Obaidul Haque

E-ISSN: 2224-2872 579 Volume 14, 2015

